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Abstract 

Facies inversion is a class of algorithms, where the 
inversion is written in terms of facies, in addition to the 
usual acoustic (or elastic) parameters. Alike the other 
approaches, facies inversion needs some parametrization, 
which depends on physical and geological reasoning as 
well as specialist experience. This work discusses the 
problem of inferring the inversion parameters from the 
seismic data itself. The parametrization of the geological 
related parameter, namely, transition probability matrix, is 
inferred given the seismic data, using Bayesian framework. 
While it is usually assumed that a single parameter value 
can optimally fit the measurements, in the present paper, 
this hypothesis is questioned. In both synthetic and real 
seismic datasets it is shown that the symmetries of the 
convolutional model allow more than one transition matrix 
to be a local optimum to the inference problem, which 
enables a higher diversity of possible solutions to the 
inversion problem than usual approaches. 

Introduction 

The facies classification from seismic in hydrocarbon 
reservoirs is a challenging problem since seismic data is 
an indirect measurement, with limited resolution and 
usually low signal to noise ratio. Some authors have 
approached the problem from a Bayesian inverse theory 
point of view [1-2], others with geostatistical tools [3-9] and 
yet other by means of machine learning [10-11]. 

The solution of the inversion problem is not unique 
because different facies sequences may generate 
indistinguishable seismic response. Thus, uncertainty 
quantification in facies inversion is as important as the 
prediction of the most likely facies sequence. 

Bayesian methods have been widely applied to several 
geophysical inverse problems [2,12,13,14], and aim to 
predict a probability distribution of the variable of interest, 
given a set of hyperparameters. In this approach, the 
variable of interest is described by a prior probability 
distribution before the measurement is made. Through the 
comparison of the modelled signal and the measurement 
(in the likelihood distribution), one can assess the posterior 
probability distribution, i.e. the variable´s probability after 
the measurement is taken into account. 

The facies distribution in the subsurface is assumed 
spatially correlated due to the geological continuity of the 
deposition and expected stratigraphic stacking. The 
seismic likelihood also adds spatial correlation due to 
resolution limitations. Approaches with spatial dependency 
between properties were studied in [1,15,16,17,18,19,20], 
where the prior distribution of the possible facies 
sequences is described using a first order Markov chain, 
parametrized by a transition probability matrix of the facies, 
usually estimated from nearby wells. 

Some authors [21-22] estimate the transition matrix from 
the seismic data alone, by maximizing the seismic 
likelihood as a function of the transition matrix. They 
assume that the seismic measurements themselves are 
enough to estimate the true transition matrix from all other 
possibilities. This might not be the case in some situations, 
as shown in the present paper: multiple local maxima to the 
likelihood function might exist. The presented methodology 
is important in complex geologies, such as carbonates, 
since it can sample more possibilities of facies sequences 
than the approaches from the previous papers. 

The Method section describes the inversion algorithm and 
the Bayesian inference. The Examples section presents 
both synthetic and real seismic dataset to validate the 
methodology. 

Method 

The facies inversion technique used in this paper was 
developed in [22-23], i.e. the inversion problem is written 
as a convolved hidden Markov model. 

The facies sequence is denoted by 𝝅 = (𝜋1, 𝜋2, … , 𝜋𝑁), and 

facies 𝜋𝑛 at position 𝑛 can be of any the K types defined by 

the geoscientists 𝜋𝑛 ∈ Ω = {1, … 𝐾}. The seismic trace is 

denoted by 𝒔, and is zero-offset.  

Acoustic impedance, the link between facies and seismic, 
is denoted by 𝐼𝑃. By assuming the weak contrast 

approximation 𝑠𝑛 = log 𝐼𝑃𝑛 − log 𝐼𝑃,𝑛−1 introduced in [24], 

the logarithm of the acoustic impedance is used instead 
𝒎 = (log 𝐼𝑃1 , log 𝐼𝑃2 , … , log 𝐼𝑃𝑁).  

The likelihood of the seismic trace 𝑠 given facies sequence 

𝜋 is defined as 𝑝(𝑠|𝜋) = 𝒩(𝑠|𝐺𝜇𝜋, GΣπGT + Σ𝑒), where 𝐺 is 

the convolutional forward model, 𝜇𝜋 is the mean log-

impedance sequence, Σ𝜋 is the corresponding covariance 

matrix, and Σ𝑒 is the seismic noise covariance matrix. 

The facies prior distribution is given by a first order Markov 
Chain. It is defined by the equation 𝑝(𝜋𝑛 = 𝑗|𝜋𝑛−1 = 𝑖) =
𝑇𝑖𝑗, where 𝑇 is the transition matrix. This parameter 
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controls the stratigraphic patterns that are present in facies 
sequences.  

From Bayes rule, the posterior probability 𝑝(𝜋|𝑠) of the 
facies sequences given seismic trace is proportional to the 
product of the prior distribution and the likelihood. From this 
equation, the inversion problem can be translated as trying 
to find facies sequences that model the measured seismic 
data and at the same time respect the expected 
stratigraphic style. The posterior distribution 𝑝(𝜋|𝑠) is 
complex with long range dependency between facies 
samples at different positions, and there is no analytical 
solution. Some authors [16,18,21,22] solve the facies 
inversion problem by approximating this posterior 
distribution as a product of factors 𝑝(𝜋|𝑠) ≈
∏ 𝑞(𝜋𝑛−𝑘 , … , 𝜋𝑛+𝑘)𝑛 , each one containing a facies template 

of only 2𝑘 samples. This new probability distribution can be 
interpreted as a hidden Markov model on the facies 
template variable 𝑧𝑛 = (𝜋𝑛−𝑘 , … , 𝜋𝑛+𝑘), thus it can use the 
recursive solution developed for this class of problem [25]. 
The approximation is better for bigger 𝑘, but the 
computational cost also increases because the number of 

facies templates of size 2𝑘 increases exponentially as 𝐾2𝑘. 

In this paper, the above inversion approximation is used, 
but it is encouraged that other algorithms are also possible. 
Now, the transition matrix inference problem can be 
explained. 

The transition matrix likelihood can be defined as 𝑝(𝑠|𝑇) =
∑  𝑝(𝑠|𝜋)𝑝(𝜋|𝑇)𝜋 . This equation can be interpreted as the 

correlation coefficient between 𝑝(𝑠|𝜋) and 𝑝(𝜋|𝑇), i.e. the 
transition matrix with big probability on facies sequences 
that best model the seismic sequence has highest 
likelihood. Given no prior information about the transition 
matrix, the transition matrix can be inferred from the 
seismic data by maximizing the likelihood function. While 
some authors assume that the likelihood function has a 
single optimum, this paper will explore the possibility of 
there being more than one local maxima, which should be 
considered a valid solution. 

Finally, Chapman-Kolmogorov equation can be used to 
invert the seismic data to facies sequences considering the 
uncertainty in transition matrix: 𝑝(𝜋|𝑠) = ∑ 𝑝(𝜋|𝑠, 𝑇)𝑝(𝑇|𝑠)𝑇  

Examples 

A first order Markov Chain with two facies types and a 
uniform transition matrix is sampled. The corresponding 
log-impedance distributions are shown in Figure 1 as 
facies 1 and 2. The synthetic seismogram is illustrated in 
Figure 3. The wavelet is a Dirac delta, so in this example 
the methodology is validated with an inversion from 
reflectivity to facies. 

Just two facies are observable at the well location, but from 
the symmetry between the mean log-impedances, in 
Figure 1, the seismogram can be either explained by a 
sequence of facies 2 and 3, or facies 1 and 2. This example 
illustrates the situation where some facies were not drilled 
in a well but it are known to exist in the area. 

A random search in transition matrix space revealed two 
local maxima with approximately equal likelihoods, as 
shown in Figure 2. As expected, one local maximum 
corresponds to the correct facies sequence, and the other  

 
Figure 1: Synthetic log-impedance prior distribution color 
coded by facies. 
 

 
Figure 2: Likelihood function (logarithmic scale) 
represented on a ternary plot. Each point in the plot 
represents a transition matrix, projected on the space of 
stationary probabilities for simpler visualization. 
 

 
Figure 3: In the first track, the true facies profile. In the 
second track, the sampled facies sequences (20 
sequences side by side). In the third track, the posterior 
facies probabilities. In th forth track, the true log-
impedance log in black, and the posterior log-impedance 
histograms in gray. In the last track the measured 
reflectivity in black and the modelled 80% confidence 
region in gray. 

corresponds to a sequence with only facies 2 and 3. Figure 
3 shows the result of Chapman-Kolmogorov equation to 
this example. Should just one transition matrix be 
considered, much less variability would exist in the facies 
realizations, since just sequences of facies 1 and 2 or 2 
and 3 would be sampled, depending on which local 
maxima is used for the inversion. 

As a second example, a real dataset, from a carbonate 
play is presented. There are three possible facies, closed 
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carbonate, porous carbonate, and super-porous 
carbonate. Seismic section in Figure 4 shows how facies 
varies laterally in a carbonate play. In well W1, the porous 
rock is the background rock, while in well W2, closed 
carbonates are the background rock. The challenge in 
carbonate plays is to detect super porous carbonates, at a 
distant position, where the background is unknown. 

The seismic trace at well W1 position Figure 4 is used in 
the example. A random search is done in the transition 
matrix space, revealing 5 local maxima. The facies 
probabilities for each transition matrix are shown in Figure 
5. In this case, the different local maxima have very 
different values of likelihood, possibly due to the facies 
inversion approximation, since the approximation is worst 
when the wavelet is regular sized. 

Conclusions 

In this work, a new uncertainty quantification workflow for 
facies inversion is presented. It is shown that the seismic 
likelihood given transition matrix might have multiple local 
maxima. Each local maximum, when used to parametrize 
the inversion, generates very different facies realizations. 
It is also shown how to sample facies realizations when the 
transition matrix is unknown. The proposed workflow 
presents a robust uncertainty analysis, and its applicability 
to risk analysis in complex geology, such as carbonates, is 
immediate because the fast lateral variation of facies in 
such plays increases the uncertainty in the facies 
proportions. 

 

 
Figure 4: Seismic section illustrating how fast geology 
change laterally in carbonate plays. Well W1 has a 
predominance of porous facies, while well W2 has a 
predominance of closed facies. The impedance log is 
plotted for each well. 
 

 
Figure 5: Facies posterior probabilities for each local 
maximum in likelihood space. Each transition matrix 
produces a very different inversion result. 
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